skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gu, Xuhang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 20, 2026
  2. Loosely-coupled and lightweight microservices running in containers are likely to form complex execution dependencies inside the system. The execution dependency arises when two execution paths partially share component microservices, resulting in potential runtime performance interference. In this paper, we present a blackbox approach that utilizes legitimate HTTP requests to accurately profile the internal pairwise dependencies of all supported execution paths in the target microservices application. Concretely, we profile the pairwise dependency of two execution paths through performance interference analysis by sending bursts of two types of requests simultaneously. By characterizing and grouping all the execution paths based on their pairwise dependencies, the blackbox approach can derive a clear dependency graph(s) of the entire backend of the microservices application. We validate the effectiveness of the blackbox approach through experiments of open-source microservices benchmark applications running on real clouds (e.g., EC2, Azure). 
    more » « less
  3. In this work, a dataset including structural and mechanical properties of refractory multicomponent alloys was developed by fusing computations of phase diagram (CALPHAD) and density functional theory (DFT). The refractory multicomponent alloys, also named refractory complex concentrated alloys (CCAs) which contain 2–5 types of refractory elements were constructed based on Special Quasi-random Structure (SQS). The phase of alloys was predicted using CALPHAD and the mechanical property of alloys with stable and single body-centered cubic (BCC) at high temperature (over 1,500°C) was investigated using DFT-based simulation. As a result, a dataset with 393 refractory alloys and 12 features, including volume, melting temperature, density, energy, elastic constants, mechanical moduli, and hardness, were produced. To test the capability of the dataset on supporting machine learning (ML) study to investigate the property of CCAs, CALPHAD, and DFT calculations were compared with principal components analysis (PCA) technique and rule of mixture (ROM), respectively. It is demonstrated that the CALPHAD and DFT results are more in line with experimental observations for the alloy phase, structural and mechanical properties. Furthermore, the data were utilized to train a verity of ML models to predict the performance of certain CCAs with advanced mechanical properties, highlighting the usefulness of the dataset for ML technique on CCA property prediction. 
    more » « less